Fixed points of nonexpansive condensing multivalued mappings on metric spaces
نویسندگان
چکیده
منابع مشابه
Fixed points of multivalued nonexpansive mappings in Banach spaces
* Correspondence: [email protected] Department of Mathematics, Ataturk University, Erzurum 25240, Turkey Full list of author information is available at the end of the article Abstract In this article, we first give a multivalued version of an iteration scheme of Agarwal et al. We use an idea due to Shahzad and Zegeye which removes a “strong condition” on the mapping involved in the ite...
متن کاملOn fixed points of fundamentally nonexpansive mappings in Banach spaces
We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...
متن کاملFixed Points for Multivalued Mappings in Uniformly Convex Metric Spaces
In 1974, Lim 1 developed a result concerning the existence of fixed points for multivalued nonexpansive self-mappings in uniformly convex Banach spaces. This result was extended to nonself-mappings satisfying the inwardness condition independently by Downing and Kirk 2 and Reich 3 . This result was extended to weak inward mappings independently by Lim 4 and Xu 5 . Recently, Dhompongsa et al. 6 ...
متن کاملGeodesic metric spaces and generalized nonexpansive multivalued mappings
In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...
متن کاملConvergence of approximating fixed points sets for multivalued nonexpansive mappings
Let K be a closed convex subset of a Hilbert space H and T : K ⊸ K a nonexpansive multivalued map with a unique fixed point z such that {z} = T (z). It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to z.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1982
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1982-0640244-6